大家都知道考研數(shù)學(xué)對(duì)理科生來(lái)說(shuō)絕對(duì)是最頭疼的科目,考研數(shù)學(xué)名師湯老師經(jīng)常講線性代數(shù)各章節(jié)易考知識(shí)提分點(diǎn),如果沒報(bào)考,沒關(guān)系,不妨看看研究生輔導(dǎo)機(jī)構(gòu)的數(shù)學(xué)老師總結(jié)線性代數(shù)各章節(jié)易考知識(shí)點(diǎn)的文章,如有需要及時(shí)加入陜西文都20考研交流群, 陜西文都考研網(wǎng)持續(xù)為您提供考研所需的相關(guān)指導(dǎo)信息。20考研資料共享:【互動(dòng)可加群】丨官方網(wǎng)站【@陜西文都考研】
一、第一章行列式
本章的重點(diǎn)是行列式的計(jì)算,主要有兩種類型的題目:數(shù)值型行列式的計(jì)算和抽象型行列式的計(jì)算。數(shù)值型行列式的計(jì)算不會(huì)以單獨(dú)題目的形式考查,但是在解決線性方程組求解問題以及特征值與特征向量的問題時(shí)均涉及到數(shù)值型行列式的計(jì)算;而抽象型行列式的計(jì)算問題會(huì)以填空題的形式展現(xiàn),在歷年考研真題中可以找到有關(guān)抽象型行列式的計(jì)算問題。
因此,廣大考生在復(fù)習(xí)期間行列式這塊要做到利用行列式的性質(zhì)及展開定理熟練的、準(zhǔn)確的計(jì)算出數(shù)值型行列式的值,不論是高階的還是低階的都要會(huì)計(jì)算;另外還要會(huì)綜合后面的知識(shí)會(huì)計(jì)算簡(jiǎn)單的抽象行列式的值。
二、第二章矩陣
本章需要重點(diǎn)掌握的基本概念有可逆矩陣、伴隨矩陣、分塊矩陣和初等矩陣,可逆陣與伴隨矩陣的相關(guān)性質(zhì)也很重要,也是需要考生掌握的。除了這些就是矩陣的基本運(yùn)算,可以將矩陣的運(yùn)算分為兩個(gè)層次:
1、矩陣的符號(hào)運(yùn)算
2、具體矩陣的數(shù)值運(yùn)算
矩陣的符號(hào)運(yùn)算就是利用相關(guān)矩陣的性質(zhì)對(duì)給出的矩陣等式進(jìn)行化簡(jiǎn),而具體矩陣的數(shù)值運(yùn)算主要指矩陣的乘法運(yùn)算、求逆運(yùn)算等。
三、第三章向量
本章的重點(diǎn)有:
1、向量組的線性相關(guān)性證明、線性表出等問題,解決此類問題的關(guān)鍵在于深刻理解向量組的線性相關(guān)性概念,掌握線性相關(guān)性的幾個(gè)相關(guān)定理,另外還要注意推證過(guò)程中邏輯的正確性,還要善于使用反證法。
2、向量組的極大無(wú)關(guān)組、等價(jià)向量組、向量組及矩陣秩的概念,以及它們之間的相互關(guān)系。要求會(huì)用矩陣的初等變換求向量組的極大線性無(wú)關(guān)組以及向量組或者矩陣的秩。
四、第四章線性方程組
本章的重點(diǎn)是利用向量這個(gè)工具解決線性方程組解的判定及解的結(jié)構(gòu)問題。題目基本沒有難度,但是考生在復(fù)習(xí)的時(shí)候要注意將向量與線性方程組兩章的知識(shí)內(nèi)容聯(lián)系起來(lái),學(xué)會(huì)融會(huì)貫通。
五、第五章特征值與特征向量
本章的基本要求有三點(diǎn):
1、要會(huì)求特征值、特征向量
對(duì)于具體給定的數(shù)值型矩陣,一般方法是通過(guò)特征方程∣λE-A∣=0求出特征值,然后通過(guò)求解齊次線性方程組(λE-A)ξ=0的非零解得出對(duì)應(yīng)特征值的特征向量;而對(duì)于抽象的矩陣來(lái)說(shuō),在求特征值時(shí)主要考慮利用定義Aξ=λξ,另外還要注意特征值與特征向量的性質(zhì)及其應(yīng)用。
2、矩陣的相似對(duì)角化問題
要求掌握一般矩陣相似對(duì)角化的條件,但是重點(diǎn)是實(shí)對(duì)稱矩陣的相似對(duì)角化,即實(shí)對(duì)稱矩陣的正交相似于對(duì)角陣。這塊的知識(shí)出題比較靈活,可直接出題,也可以根據(jù)矩陣A的特征值、特征向量來(lái)確定矩陣A中的參數(shù)或者確定矩陣A;另外由于實(shí)對(duì)稱矩陣不同特征值的特征向量是相互正交的,這樣還可以由已知特征值λ1的特征向量確定出λ2(λ2≠λ1)對(duì)應(yīng)的特征向量,從而確定出矩陣A。
3、相似對(duì)角化之后的應(yīng)用,主要是利用矩陣的相似對(duì)角化計(jì)算行列式或者求矩陣的方冪。
六、第六章二次型
二次型這一章的重點(diǎn)實(shí)質(zhì)還是實(shí)對(duì)稱矩陣的正交相似對(duì)角化問題。這一章節(jié)要求考生掌握二次型的矩陣表示,用矩陣的方法研究二次型的問題主要有兩個(gè):
1、化二次型為標(biāo)準(zhǔn)形
主要是利用正交變換法化二次型為標(biāo)準(zhǔn)型,這是考研數(shù)學(xué)線性代數(shù)的重點(diǎn)大題題型,考生一定要掌握其做題的基本步驟?;涡蜑闃?biāo)準(zhǔn)型的實(shí)質(zhì)也是實(shí)對(duì)稱矩陣的正交相似對(duì)角化問題。
2、二次型的正定性問題
這一知識(shí)點(diǎn)主要考查小題。對(duì)具體的數(shù)值二次型,一般可用順序主子式是否全部大于零來(lái)判別,而抽象矩陣的正定性判斷可以通過(guò)利用標(biāo)準(zhǔn)形,規(guī)范形,特征值等得到證明,這時(shí)應(yīng)熟悉二次型正定有關(guān)的充分條件和必要條件。
上面就是給大家整理的研究生輔導(dǎo)機(jī)構(gòu)的數(shù)學(xué)老師總結(jié)線性代數(shù)各章節(jié)易考知識(shí)點(diǎn)的相關(guān)內(nèi)容,如有更多疑問,請(qǐng)及時(shí)咨詢?cè)诰€老師。
?。庳?zé)聲明:本站所提供的內(nèi)容均來(lái)源于網(wǎng)友提供或網(wǎng)絡(luò)搜集,由本站編輯整理,僅供個(gè)人研究、交流學(xué)習(xí)使用,不涉及商業(yè)盈利目的。如涉及版權(quán)問題,請(qǐng)聯(lián)系本站管理員予以更改或刪除。)
哈工大 | 吉林大學(xué) | 東南大學(xué) | 南京大學(xué) | 上海交大 | 同濟(jì)大學(xué) | 復(fù)旦大學(xué) | 山東大學(xué) | 大連理工 | 蘭州大學(xué) | 重慶大學(xué) | 西工大 | 西安交大 | 電子科大 | 四川大學(xué) | 中科大 | 武漢大學(xué) | 華中科大 | 中南大學(xué) | 湖南大學(xué) | 廈門大學(xué) | 中山大學(xué) | 浙江大學(xué) | 天津大學(xué) | 南開大學(xué) | 中國(guó)農(nóng)大 | 北京航空 | 北京理工 | 北京師范 | 人民大學(xué) | 北京大學(xué) | 清華大學(xué) |